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A B S T R A C T   

The unprecedented generation of large volumes of biodiversity data is consistently contributing to a wide range 
of disciplines, including disease ecology. Emerging infectious diseases are usually zoonoses caused by multi-host 
pathogens. Therefore, their understanding may require the access to biodiversity data related to the ecology and 
the occurrence of the species involved. Nevertheless, despite several data-mobilization initiatives, the usage of 
biodiversity data for research into disease dynamics has not yet been fully leveraged. 

To explore current contribution, trends, and to identify limitations, we characterized biodiversity data usage in 
scientific publications related to human health, contrasting patterns of studies citing the Global Biodiversity 
Information Facility (GBIF) with those obtaining data from other sources. 

We found that the studies mainly obtained data from scientific literature and other not aggregated or stan-
dardized sources. Most of the studies explored pathogen species and, particularly those with GBIF-mediated data, 
tended to explore and reuse data of multiple species (>2). Data sources varied according to the taxa and 
epidemiological roles of the species involved. Biodiversity data repositories were mainly used for species related 
to hosts, reservoirs, and vectors, and barely used as a source of pathogens data, which was usually obtained from 
human and animal-health related institutions. While both GBIF- and not GBIF-mediated data studies explored 
similar diseases and topics, they presented discipline biases and different analytical approaches. 

Research on emerging infectious diseases may require the access to geographical and ecological data of 
multiple species. The One Health challenge requires interdisciplinary collaboration and data sharing, which is 
facilitated by aggregated repositories and platforms. The contribution of biodiversity data to understand infec-
tious disease dynamics should be acknowledged, strengthened, and promoted.   

1. Introduction 

The current threat of emerging zoonotic diseases, involving non- 
human animal species, is motivating research on several wild and do-
mestic species, usually requiring access to primary biodiversity data 
related to their occurrences and distributions [1–4]. In general, biodi-
versity data tend to be associated with ecological and environmental 

disciplines; however, for disease research purposes, multiple disciplines 
may need to manage, share and integrate knowledge, including those 
related to human and animal health [2,5,6]. In fact, considering the 
COVID-19 pandemic, the need for an interdisciplinary and collaborative 
One Health approach has never been more urgent [7,8]. 

Unprecedented volumes of biodiversity data—including species’ 
morphology, ecology, occurrences, taxonomy, and molecular 
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sequence—are continuously generated, based on born-digital records or 
originated from the digitization of specimens maintained by natural 
history collections, field observations, citizen science, molecular sam-
pling, among others [4,9–11]. Primary biodiversity data related to oc-
currences —which reports a named organism observed or collected in a 
given time and place—can be then organized in datasets and published 
in supplementary materials, and then may become available in data 
repositories such as DRYAD [12], Zenodo [13], among others. In some 
cases, these datasets are available in standardized and fit-for-use formats 
following the FAIR principles (findability, accessibility, interoperability 
and reusability) [14,15]. For example, the Darwin Core standards offers 
a stable framework for compiling biodiversity data from variable sour-
ces, with structures terms that facilitate data access and reuse, which can 
be then aggregated into portals, platforms, and facilities [11,16,17]. 

Among these aggregated platforms, the Global Biodiversity Infor-
mation Facility (GBIF) was formed in 2001 as an intergovernmental 
initiative, following the recommendation of the Working Group on 
Biological Informatics of the Mega-Science Forum of the Organization 
for Economic Cooperation and Development (OECD) [18], with the 
purpose of promoting the development of infrastructures for diverse, 
high quality and integrated biodiversity data access. Currently, GBIF is 
the world’s largest biodiversity data platform mediating over 2 billion 
species occurrence records, with an annual rate of increase of 250–300 
million [1]. 

Biodiversity data of specieś occurrences are widely used for geo-
spatial analysis in disciplines such as conservation, biogeography, 
wildlife management, among many others [1,10,14,19], including in-
fectious disease research [1,3]. In this context, documenting the 
occurrence of pathogens and other organisms involved in disease cir-
culation is fundamental [20], and their value to support research con-
cerning human health and infectious diseases is becoming more 
apparent [4,21,22]. For example, occurrence data have been used in 
distribution modelling to predict the spread of pathogens and vectors, 
incorporating an ecological understanding of disease dynamics [23,24]. 
Nevertheless, systematic analyses of the patterns of use of biodiversity 
data for human health has not been carried out, which could give evi-
dence to improve the processes and systems involved. The present study 
develops an in-depth exploration of human health studies that have 
made use of biodiversity data, defining biodiversity as all living organ-
isms, including viruses [25]. For this, we characterize and compare 
studies that obtained data from GBIF with those that use other data 
sources, identifying those sources used instead of, and together with 
GBIF. We discuss current challenges and steps that holders and media-
tors of biodiversity data resources could consider to promote its use for 
zoonotic disease research. 

2. Methods 

We generated two lists of scientific studies related to human health 
that reuse biodiversity data, separated into those with GBIF-mediated 
data (positive list) and those that used other data sources (negative list). 
The positive studies were obtained from the scientific literature database 
tracked and maintained by the GBIF Secretariat since 2015 (details in 
Appendix A). After exclusion filtering (duplicates, out of the scope), the 
final positive list was generated by selecting those specifically related to 
human infectious diseases. The negative list was generated by searching 
in the Dimensions database (www.dimensions.ai, August 2021), using a 
keyword string based on terms obtained from the positive list (including 
‘zoonoses’, ‘bat borne disease’, ‘rodent borne’; Appendix A). Negative 
list was generated by randomly selecting studies from these results 
mirroring the positive list size. We excluded studies with pathogens only 
related to humans, those not reusing data from other sources, and 
studies with data without GBIF scope (e.g., only with captive domestic 
animals). We did not consider pathogen variables based on serology 
testing, as the presence of antibodies may not necessarily represent 
pathogens’ occurrence. 

Analyses were developed at study- and variable-levels (Fig. 1). The 
studies were grouped according to GBIF usage in three categories: (a) 
only using GBIF-mediated data; (b) studies using GBIF together with 
other data sources; and (c) studies not using GBIF (from the negative 
list). As targets for analyses, studies explored single species or taxon or, 
alternatively, explored multi-species groups, and therefore could be 
disaggregated in different analytical entities or variables (variable-level). 
For example, one study may explore mosquitoes and rodents, repre-
senting two different variables, which could have different analytical 
approaches, data sources, and represent different epidemiological 
levels, i.e., hosts (e.g., rodents), vectors (e.g., mosquitoes), or pathogens 
(e.g., viruses) (a.k.a. disease compartment [26]). We only included vari-
ables related to biodiversity, and occurrence data of pathogens and 
vector species recorded in domestic animals but not the occurrence of 
domestic animals themselves. 

We first developed a bibliometric analysis using the Biblioshine 
platform (R Bibliometrix package) [27], including parameters such as 
journals, authors’ affiliations, among others. To characterize and 
compare topics and research areas, we used three approaches, starting 
with the Bibliometrix theme analysis, which combines performance 
analysis and science mapping, and identifies conceptual subdomains 
and thematic structure based on the co-occurrence of key terms [27]. 
The resulting thematic map consists of a Cartesian representation with 
clusters distributed into four quadrants organized according to their 
centrality (degree of interaction with other clusters and citation dy-
namics), and themes’ development or evolution (clusters’ internal 
strength and consistency). Complementarily, we identified and compare 
the most frequent words extracted from the titles and abstracts, and the 
research areas of the journals where they were published and authors’ 
affiliations. 

For each study we recorded the infectious diseases explored and 
characterized them according to the causal pathogen (virus, bacteria, 
parasite, fungus) and transmission mode (mediated by vectors and/or 
vertebrate animals). At variable-level, we described the species inves-
tigated according to their taxa-class (taxonomic groups), and epidemi-
ological level. We identified and characterized the additional data 
sources used according to their type, disciplines or scope, scale, and 
governance, and recorded if they were used together or instead of GBIF- 
mediated data. 

3. Results 

The GBIF literature tracking system returned 228 studies related to 
human health citing GBIF-mediated data, reduced to 220 after filtering. 
Nearly half (113; 51.4%) were not related to infectious diseases, 
covering topics of medicinal plants (89; 40.5%), venomous species 
(snakes, scorpions, spiders) (8; 3.6%), pollen and allergies (7; 3.2%), and 
others (9; 4.1%). Among the 107 studies related to infectious diseases (i. 
e., positives), 29 (27.1%) included diseases mediated only by vectors, 40 
(37.4%) zoonoses only related to vertebrate animals, and 38 (35.5%) 
included diseases with both transmission modes. 

General results of the bibliometric analyses are summarized in 
Table 1. Both positive and negative studies presented a consistent and 
similar annual growth rate along the period (18.5% positives, 18.1% 
negatives), and coincided in four of their most relevant journals, 
although negatives studies were published in a larger number of jour-
nals. We identified 207 authors’ affiliations in the positive studies and 
236 in the negatives, coinciding in 62 of them. Relevant affiliations (i.e., 
those participating in >2 studies) related to medical, clinical, or public 
health disciplines were more frequent in negative studies (43.9%) 
compared with positives (23.5%). Universities were more frequent in 
positive studies, while affiliations related to governmental institutions 
were more frequent in the negatives. 

Topics and diseases: The thematic cartesian map resulted in clus-
ters with similar general topics, presenting differences in terms related 
to analytical methods and specialized research areas (Appendix B). In 
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both groups, clusters located as relevant themes (i.e., located in Motor 
and Basic quadrants) presented similar terms such as animals, climate 
change, and animal distributions, with higher intra-group consistency 
(establishment) in clusters with terms related to geography and disease 
vectors. Positive clusters included also analytical terms (theoretical 
models, risk assessment). In the Niche themes quadrant —specialized 
topics, low relevance but with high internal consistency—there were no 
matching terms: topics of negative studies were related to malaria, 
Macaca, and Culicidae, meanwhile in the positives, were related to 
yellow fever, Rabies, and cattle. 

In general, the most frequent words were similar between groups, 
both presenting terms such as spatial distributions, geography, climate 
change, disease reservoirs, and other vector-related terms (Appendix B). 
Negative studies presented more frequency of words related to tick- 
borne diseases and leishmaniases, mirroring the trend observed in the 
thematic map, meanwhile frequent terms in the positive studies were 
more related to mosquitoes’ species and ecological niche models. 

We identified 31 research areas in the journals, separated into 16 
subcategories, and grouped into six categories named as: Biology, 
Ecology, Engineer-informatics-mathematics, Medicine, Veterinary sci-
ences, and Others (Fig. 2). Most of these categories presented differences 
between positives and negatives, with major relevance of biological and 
ecological areas in the positives, and with medical, public health and 
veterinarian sciences in negative studies. 

Positive studies explored 42 diseases, and negative studies 34, and in 
both groups malaria and leishmaniasis were the most frequent diseases 
(Fig. 3, Table 1, Appendix C). Viral diseases were explored in almost half 
of the positive studies (54; 50.5%), and 41 (38.3%) of the negative 
studies were related to parasites, with a remarkable relevance of 
leishmaniasis. 

Variable-level: Studies were disaggregated by 358 variables, from 
which 157 (43.9%) originated in the negative studies and 201 (56.1%) 
in the positives (Fig. 1). Most of the 238 non-GBIF variables were 
extracted from the negative studies. The studies in both groups tended to 
analyse two or more species (positives: 81; 75.7%; negatives: 61; 
57.0%), with a larger number of species in the positive studies (2669 

species; average 32.5 per study) compared with the negatives (1136 
species; 12 per study) (Table 1). In both groups we found studies not 
specifying the total number of species explored (23 in positives,13 in 
negatives). 

The two groups presented remarkable differences in the epidemio-
logical levels of the variables explored (Fig. 1, Fig. 4, Fig. 5). Overall, a 
40.5% of the variables were related to pathogen species (145; 40.5%), 
with 58 of them (40.0%) obtained from the positive studies; however, 
GBIF was seldomly used as the data source (only in 3 variables), and in 
none of these used as an exclusive source (i.e., GBIF was used with other 
sources). We identified 115 variables related to vectors (32.1%), 68 of 
them (59.1%) found in positive studies. GBIF was the data source in 52 
(85.2%), being particularly relevant for variables related to Aedes spp. 
and Culicidae mosquitoes. Finally, 90 variables (25.1%) were related to 
host/reservoirs, mostly obtained from the positive studies (67; 74.4%), 
with GBIF-mediated data used in 58 of them (86.6%). GBIF was the only 
source for 27 variables related to host/reservoirs, being particularly 
relevant for Pteropus bats and murid rodents. 

Regarding the proportion of the epidemiological levels within each 
group, in the positive studies 33.4% of the 201 variables were related to 
vectors, 33.3% to hosts/reservoirs and 28.7% were related to pathogens. 
The remaining eight variables (4.9%) were related to other epidemio-
logical roles, such as regulator or vector predators, and almost half of the 
positive studies (52; 48.6%) did not include any pathogen variable. In 
contrast, near half (86; 54.7%) of the 157 variables from the negative 
studies were pathogens, followed by vectors (47; 29.9%) and hosts/ 
reservoirs (22; 14.0%). Thirty-six negative studies (33.6%) did not 
include any pathogen variable. 

Overall, 108 (74.5%) of the 145 pathogen variables were recorded in 
humans, 52 (35.9%) in non-human vertebrates, and 19 in vectors 
(13.1%). Most of the non-human vertebrate records (33; 70.2%) were 
obtained from wild species and 22 (46.8%) from domestic animals (e.g., 
cattle, dogs, pigs). In some variables pathogens were recorded in more 
than one species (e.g., from humans and rodents), therefore, total per-
centages do not sum 100. 

We identified 172 additional sources used 517 times (Fig. 5, 

Fig. 1. General framework of analyses at study- and variable-levels. In the upper section (study-level, in grey), studies are divided in those that used GBIF-mediated 
data (positives, in orange) and those that did not (negatives, in blue). Positive studies were group according if GBIF was used as the only data source for all variables 
(2 studies), or if the variables were based on GBIF together with other data sources (105 studies). In the variable-level section (bottom, white background) the total 
358 variables extracted from the positive and negative studies were categorized according to the specific use of GBIF, resulting in five types of variables, four of them 
extracted from the positive studies. Note that in those studies based on GBIF, the different variables could be based on GBIF alone (33 variables), GBIF together with 
other sources (85), or specific variables may not be based on GBIF-mediated data at all (81 variables). Finally, each variable was related to different epidemiological 
roles, resulting in a larger number hosts/reservoirs variables, mostly based on GBIF-mediated data, and a higher presence of pathogen species-variables not using 
GBIF. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix D). Unidentified sources included those with generic or un-
specified descriptions, such as ‘national reports’, or ‘unpublished data’. 
Data sources were grouped into 27 categories based on type (e.g., sci-
entific literature, repositories), scale (e.g., national, global), topic (e.g., 
health, biodiversity), among others. For scientific literature we recog-
nized three subcategories: (a) literature search when data was obtained 
from studies searched in databases (e.g., PubMed, Google Scholar, 
Scopus) and original studies; (b) if data was obtained from scientific re-
views; (c) or from data journals. Scientific search was the most frequent 
subcategory, used for 142 variables (39.7%), followed by governmental 
health institutions (83; 23.2%), scientific reviews (37; 10.3%), and 
global biodiversity/biological platforms (35; 9.8%). Additional sources 
with global scale were used 314 times (60.7%), and among the 184 
times in which national-scale sources were used, 20.3% (105) were 
related to governmental and 15.3% (79) to private institutions. 

We identified 94 additional sources used for pathogen variables 
(average 1.61 sources per variable), with scientific search used in 67 of 
them (46.2%), and governmental health institutions in 62 (42.7%) 
(Fig. 5). For vectors we identified 75 additional sources (1.63 per vari-
able), with scientific literature used in 77 (66.9%) and governmental 
health institutions in 19 (16.5%) variables. Finally, 36 additional sour-
ces were used for host/reservoirs (1.10 per variable), with global bio-
logical/biodiversity repositories and platforms used in 28 variables 
(31.1%), and scientific search in 17 (18.9%). Only 30 additional sources 

(17.4%) were used for multiple epidemiological levels, and only scien-
tific literature was used for the three levels. 

Among the sources used together with GBIF, the most frequent was 
scientific search (Appendix E). For vectors, GBIF was also complemented 
with VectorMap and SpeciesLink, and for host/reservoirs used with 
IUCN and VectorMap. In general, GBIF was infrequently used together 
with health-related sources. 

4. Discussion 

Our results give evidence of the growing contribution of biodiversity 
data for emerging infectious diseases research, which are frequently 
zoonotic and transmitted by vectors, influenced by the ecology and in-
teractions of multiple species [1,3,4,21,28–30]. Our results address this 
complexity, while most of the studies explored (especially those using 

Table 1 
Bibliometric analyses: comparison between positive and negative studies.  

Variable Positive studies Negative studies 

Core journals1 (in 
parenthesis the ones only 
present in the 
corresponding group) 

5 journals (BioRxiv) 7 journals (Int. J. of Health 
Geographics; J. of Medical 
Entomology, Scientific 
Reports; Animals) 

Number of authors’ 
affiliations 

207 236 

1st most frequent affiliation U. of Kansas, USA* 
(11 studies; 20.3%) 

Tehran U. of Medical 
Sciences, Iran (9 studies; 
8.9%) 

2nd most frequent 
affiliation 

National 
Autonomous U. of 
Mexico (10 studies; 
9.3%) 

U. of Oxford, UK** (8 
studies; 7.9%) 

3rd most frequent 
affiliation 

U. of California, 
USA* (9 studies; 
8.4%) 

U. of Florida, USA* (6 
studies; 5.9%) 

N◦ affiliations related to 
medical, clinical, and 
public healthþ

12 (23.5%) 18 (43.9%) 

N◦ affiliations related to 
universitiesþ

39 (76.5%) 24 (58.5%) 

N◦ affiliations related to 
governmental 
institutionsþ

6 (11.8%) 9 (21.9%) 

N◦ of countries (authors’ 
affiliations) 

35 countries 65 countries 

Most frequent countries 
(authors’ affiliations) 

USA*, 44 studies 
UK**, 16 studies 
Australia, 14 studies 

USA*, 33 studies 
UK**, 19 studies 
Iran, 12 studies 

Total number of species and 
average 

2669 total; 
32.5 species per 
study 

1136 total, 
12 species per study 

N◦ studies with 1 species 24 (22.4%) 45 (42.1%) 
N◦ studies with 2–50 

species 
74 (69.1%) 59 (55.1%) 

N◦ studies with >51 species 7 (6.5%, max 457 
spp.) 

3 (2.8%, max 317 spp.) 

N◦ of diseases explored 42 34 
Most relevant pathogen 

taxa class 
Virus (49 studies; 
47.8%) 

Parasites (41 studies; 
38.3%) 

1Positive and negative lists presented four core journals in common: Acta 
Tropica; Parasites & Vectors; PloS Neglected Tropical Diseases; PLoS ONE. 
*USA: the United States of America; **UK: the United Kingdom; þ: only con-
siders affiliations with at least two studies. U.: University. 

Fig. 2. Research areas identified in the studies. Research areas subcategories 
are represented in the left axis, and general research area groups in the right 
axis. Orange circles represent the number of positive studies, the blue circles the 
negatives, and the black lines between them represent the differences in the 
number of studies, in which larger lines represent larger differences between 
positive and negatives. Orange icons correspond to research areas with larger 
number of positive studies, i.e., positive studies were more related to Biology 
(Bio), Ecology (Ecol) and Other (Hum Soc: Human society; Phy Env Geo: Physical 
environmental geology; Earth Atm: Earth and atmospheric sciences). Negative 
studies were more frequent in research areas with blue icons, including Medical 
(Med) and Veterinary sciences (Vet: Veterinarian and agriculture). In the green 
icon (Eng Inf Mat: Engineering, informatics, and mathematics) there was no 
major differences between groups. Subcategories: Bio Zoo: Biology and zoology; 
Bio Evo Gen: Biology, evolution, and genetics; Bio Bioch: Biology and 
biochemistry; Env Mang: Environmental management and sciences; Eco App: 
Ecological applications; Math Stat: Mathematical statistics; Inf Comp: infor-
matics and computing; Eng Geom: Engineer and geometrics; Microb: Microbi-
ology; Pub Heal: Public health; Med Micro: Medical microbiology; Med Clin Heal: 
Medical clinical and health. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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GBIF-mediated data) include the analyses of multiple variables, species, 
and epidemiological levels. Here, we characterize usage trends of 
biodiversity data for infectious diseases research and identify other data 
sources used for similar proposes. Our findings reveal usage-gaps and 
current limitations, summarized in Appendix F together with potential 
actions to be taken. 

Data sources uses and gaps: In general, biological and biodiversity 
repositories (including GBIF) were relevant for facilitating data related 
to hosts/reservoirs and vector species (Fig. 4, Fig. 5), with GBIF 
frequently used as the data source for mosquitoes and mammals such as 
bats and rodents. Mosquitoes are considered the most lethal species for 
humans, responsible for at least 700,000 deaths per year [31], and bats 
and rodents are well-known hosts and reservoirs of several zoonotic 
pathogens [32]. Therefore, GBIF contributes with aggregated and 
standardized data to the understanding of these species’ distribution and 
ecology, which may give important clues about disease potential dis-
tribution and risk. This contribution is observed independently of the 
distribution (proportion) of species’ occurrences in the GBIF database. 

In positive studies (i.e., those using GBIF), GBIF presented an un-
paired contribution depending on the epidemiological level. Even 

though the similar proportion of variables for the three epidemiological 
levels in positive studies (33.4%, 33.2%, 28.7% for vectors, hosts/res-
ervoirs and pathogens, respectively), GBIF had a remarkable lower use 
for pathogens (2.5%; Fig. 4, Fig. 5). In fact, GBIF was not used as the only 
source in any study exploring multiple variables, revealing a selective 
use in which even though authors were familiar with GBIF, they tended 
to exclude it for some variables, especially when related to pathogens. 

However, this unpaired use was not exclusive of GBIF. Most of the 
data sources were used for specific species groups related to only one or 
two epidemiological levels, i.e., not used to obtain data related to 
pathogens, hosts/reservoir, and vector species. However, GBIF and sci-
entific literature represented the only data source that, exceptionally, 
were used to obtain data of species related to the three epidemiological 
levels. Therefore, even with its limited use for pathogens, GBIF repre-
sented the only individual data source with a wider usage. 

The selective use of data sources according to the species and their 
epidemiological levels may be influenced by the scope of the data pro-
vided. For example, biodiversity data repositories tend to exhibit taxo-
nomic biases, in general towards social preferences and charismatic 
species (e.g., birds, mammals) [33,34]. GBIF, for example, presents a 

Fig. 3. Diseases explored in the studies according to the use of GBIF and the taxa class of the causal pathogen. In the right panel: positive studies (i.e., those studies 
that used GBIF-mediated data for at least one of the variables explored), negative studies in the left. Bars represent the number of studies exploring each disease, and 
filling colors represent the corresponding taxa class of the disease agent or causal pathogen (Purple scale, with lighter coloration for fungal diseases, followed by 
parasites, bacteria, and viruses with the darker purple). Abbreviations: the abbreviation Oth (Fungal Oth, Parasite Oth, Bacteria Oth, Virus Oth) represents a category 
with multiple species, merged to simplify the figure due to the low number of studies of each disease. Ricket-related: diseases related to Rickettsia species; Paras: 
parasites; Schistos: Schistosomiases; Leishm: Leishmaniases (both cutaneous and visceral); Dis: disease; Bact: bacteria; Fev: fever; V: virus; CoronaV: Coronavirus. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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median of 317 occurrences per bird species, in contrast to only three for 
arachnids [33]. In addition, biodiversity data tend to be biased towards 
free-living organisms, as opposed to mutualistic species, parasites and 
pathogens [35,36]. In fact, besides a few exceptions (e.g., Biological 
Abstracts, GenBank), most of the additional biodiversity/ biological data 
sources were seldomly used to obtain pathogen data (Fig. 5, Appendix 
D). This bias contrasts with the following definition of biodiversity: ‘the 
sum of all plants, animals, fungi, and microorganisms on Earth, their 
genotypic and phenotypic variation, and the communities and ecosys-
tems of which they are a part’ [37]. For example, GBIF offers occurrence 
data of only three viruses known to infect humans (Zika, West Nile, and 

Hepatitis B; GBIF.org, February 2022). 
Nevertheless, despite this limited availability of virus data, we found 

that GBIF supported 49 studies related to viral diseases (Fig. 3), in which 
viral occurrences were not always required. In fact, near half of the 
positive studies and one-third of the negatives did not include any 
pathogen species data, revealing that disease research, modelling and 
risk assessments may be developed using vector or host species’ occur-
rences. For example, the major threat suddenly imposed by SARS-CoV-2 
motivated the access to ecological data concerning potential reservoirs 
of coronavirus and others with zoonotic potential, not necessarily 
requiring virus occurrences [20,32,38]. Similarly, Estrada-Peña et al. 

Fig. 4. Variables according to taxon 
class (Y- axis) epidemiological level 
(bar colour) and the use of GBIF- 
mediated data. Bars represent the 
number of variables by each taxon 
class (Y-axis), separated in two panels 
according to the use of GBIF-mediated 
data. In the right panel, variables in 
which GBIF-mediated data was used 
(Used_GBIF), in the left panel variables 
in which data was not obtained from 
GBIF (NonGBIF). Next to the bars, the 
number of variables by each epidemi-
ological level, and percentage in rela-
tion to the total number of variables of 
each group (Used_GBIF: 120 and Non-
GBIF: 238). Taxon classes are grouped 
by taxonomic associations (e.g., birds, 
primates, ticks, mosquitoes); however, 
some were merged to simplify the 
figure. For example, mamm/oth/var 
includes multiple mammal species 
which were sparsely mentioned; simi-
larly, hosts/res var, vector other and 
path other grouped several species 
participating as hosts/reservoirs, vec-
tors, and pathogens, respectively. Bar 
colors represent epidemiological levels 
(pathogens, vectors, hosts/reservoirs), 
and Other (in sienna) includes species 
participating as hosts’ regulator, 

predators, among others. GBIF-mediated data was only used in three pathogen variables (purple), representing only 2.5% of the variables in which GBIF-mediated 
data was used, resulting in a remarkable difference with other sources (NonGBIF), in which pathogens represented a 59.7%. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)   

Fig. 5. Data sources according to epidemiological 
level and scale. Representation of the data sources 
(left column) used for each epidemiological level 
(central column), and the scale of the corresponding 
data sources (right). Colors of the left column corre-
spond to general data-sources categories; for example, 
green corresponds to biological/biodiversity data 
sources (e.g., Biodiversity repositories and biological 
general source). Health-related sources are repre-
sented in purple (Health gov: governmental, init-pro-
gram: initiative or programs). Using this broad 
categorization, most of the sources contribute with 
data related to the three epidemiological levels, 
although with an unpaired flow. For example, scien-
tific literature has a lower contribution for hosts/ 
reservoirs, and biodiversity-biological sources have a 
minor contribution for pathogens. Most data sources 
have a global scale meanwhile governmental sources 
have a relevant contribution to pathogen data. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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(2019) generated maps of potential tick-borne pathogen distribution 
based on cooccurrences data of ticks and hosts, the latter obtained from 
GBIF [39]. Thus, the low availability of pathogen data in repositories 
such as GBIF, does not necessarily hamper their contribution to disease 
research. 

However, biodiversity repositories could consider expanding their 
taxa coverage and scope, potentially strengthening the representation of 
non-free-living organisms such as pathogens. The Museums and 
Emerging Pathogens ECHO Program may represent a good example of 
an initiative that aims to integrate wildlife biorepositories with data 
related to emerging infectious diseases [40]. On the other hand, taxa 
coverage may consider including domestic animal records. Near one- 
third of the pathogen records were obtained from non-human verte-
brates, from which half were domestic. In this context, pathogen oc-
currences detected in domestic animals fall into a grey area of 
biodiversity repositories scope. Furthermore, domestic animals are 
widely distributed and participate in several zoonotic diseases, such as 
cattle in Rift Valley fever [41], and domestic dogs in multiple helmin-
thiases [42], and their contact with humans and wild animals may 
facilitate pathogen transmission. In this study, we excluded domestic 
animal occurrences, following the general scope of GBIF and other 
biodiversity repositories, mainly focused on natural and wild-based re-
cords [43]. However, domestic animal occurrences in natural and un-
supervised settings may be considered as relevant for ecological 
monitoring [44]. In fact, GBIF offers data of domestic animals’ occur-
rences, usually individuals under natural settings, living under free- 
ranging conditions with minor influence of humans (e.g., [45]). 

Even though being a species out of GBIF scope, humans were in fact 
the most frequent host of pathogen records. Coinciding with previous 
studies [24,46], governmental health institutions and other related 
human-health initiatives were a relevant source for human records of 
pathogens, meanwhile pathogens from animals were mainly obtained 
from other specific animal-health and veterinary institutions (Appendix 
D). In fact, besides some global initiatives such as ProMed, HealthMap, 
and GIDEON, only a few sources were used to obtain pathogens data 
from both humans and animals, revealing the lack of centralized re-
positories for multi-species pathogens (Fig. 5). This could explain in part 
the use of multiple and scattered sources across observed in our results, 
contradicting with data related to host/reservoirs, in which biodiver-
sity/biological repositories are frequently used. 

The type of sources from which pathogens, vectors and hosts/res-
ervoirs also presented differences. We found that, besides scientific 
literature, data sources for pathogens tended to be more related to 
governmental institutions and health-related initiatives, usually man-
aging health primary data, with no integration of multiple data gener-
ators, and with no standardized formats. Instead, for hosts and 
reservoirs, data repositories and aggregators were more usually used. 
This could represent a general disciplinary bias, with medical and 
clinical disciplines tending to present a lower and unpaired commitment 
with some data sharing and reusing practices when compared to ecology 
and environmental sciences [47–51]. We also found this discipline bias 
when comparing research areas of the journals in which studies were 
published, even though positive and negative studies explored similar 
general topics, terms, and diseases (Fig. 2, Fig. 3, Appendix B). 
Considering the threat of multi-species pathogens, we highlight the need 
to follow One Health principles, and improve the publication of data 
related to pathogens, its mobilization to aggregated repositories, and the 
cross-linking between data managers from ecological, veterinarian, 
biomedical and human health related fields [4,20,52]. 

Compiled data (i.e., not raw data), or with non-standardized nor 
interoperable formats were frequently observed in the data sources 
identified in our results (Appendix D). Instead, data was mostly avail-
able as texts, tables, pdf, among others (e.g., Governmental Institutions 
[53,54]), requiring manual management. In other cases, additional data 
sources have options to export raw data in manageable formats (e.g., . 
cvs, .xls), such as FAO for pathogens [55]. However, even raw data is 

mostly presented with different information, different terms, or taxo-
nomic mismatches, i.e., not following FAIR principles. Standardized 
data were exceptions, such as GenBank [56], Mammals Networked In-
formation System (MaNIS [57]), Atlas of Living Australia (ALA [58]), 
and GBIF, most of them related to biodiversity data management. 
Standardisation of data facilitates sharing and reuse, and it has been 
adopted for several data types (a list of standards can be found in 
FAIRSharing resources, [59]). Scientific journals, publishers and other 
open data initiatives have make great advances in the open data policies 
[15,60–63]. However, most of the repositories of supplementary mate-
rials and data journals do not request standardized protocols, such 
DRYAD [12] and Zenodo [13]. This reflects an issue across scientific 
domains whereby simply placing data online is seen as sufficient to meet 
requirements for ‘open data’; however, data only becomes truly open 
when it succeeds to conform to the FAIR principles, with standardized, 
indexed and interoperable data [17,50,59,61,64]. 

Data provided following FAIR principles may also facilitate more 
complex analyses, which may serve to understand, predict and quantify 
human risk for pathogen transmission [23,24,65]. We found that studies 
citing GBIF-mediated data tended to include more variables and more 
species (23.2 species per study in positives, 8.3 in negatives), with topics 
and terms related to more complex analyses, including theoretical 
models and ecological niche modelling (Table 1, Appendix B), which 
often require robust data quality [23]. This findings support that the 
access to standardized and interoperable data provided by integrated 
repositories may facilitate complex and broader scale analyses [3,4,22]. 

The frequent use of scientific literature could be also explained by 
the vast amount of information not always propagated to data re-
positories, and the dynamic publication of results delivered at a faster 
rate compared to aggregated biorepositories [14,66]. Data sharing and 
flow from scientific publications to aggregators and other repositories 
may be promoted by incentives from academic institutions, universities, 
and other affiliations. Scientists should be aware about the potential 
benefits of data sharing such as professional networking and increased 
citation rates, facilitated by the DOI citation systems [47,67] and the 
opportunities in data journals—used here as a source in six studies—. 

The contribution of biodiversity data repositories for infectious dis-
ease research can be also strengthened by means of incorporating sys-
tems in their searching platforms that consider specific requirements of 
disease-ecology research. For example, beyond offering single species 
record, searching engines may consider interactions or associated oc-
currences expressed as host-pathogen, host-host, predator-host, vector- 
pathogen, among others, reflecting the observation of an individual host 
together with the pathogen occurrence [3,68]. These systems have been 
already implemented by platforms such as the Global Biotic Interactions 
database (GloBI; [69]) and ARCTOS [70], both of which enable the 
search of ‘preys on’ and ‘host of’. In the Darwin Core standard these 
associations can be informed in the terms AssociatedOccurrences and a 
class of terms ResourceRelationship; however, they have not been used 
extensively [17]. A recent publication proposes a framework for 
applying the Darwin Core data standards to diseases, based in a hier-
archical structure whereby each ‘parent’ occurrence of the host (term 
parentOccurrenceID) may be associated with multiple ‘child’ occurrences 
or material samples (basisOfRecord) [3]. This metadata harmonization at 
record-level —which corresponds to a publisher responsibility— could 
be complemented with an identification at species-level, tagged for 
example as ‘host’ or ‘reservoir’ (Appendix F). This latter task, however, 
requires that data managers define a particular role of a species in dis-
ease dynamics, which may be a complex process, vary according to the 
specific epidemiological interactions, and not always under scientific 
consensus [26,71]. 

5. Conclusions 

This study gives evidence and confirms the contribution of biodi-
versity data to human health research, identifying the usage of 
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biodiversity data repositories as trusted, well positioned, and valuable 
infrastructures to obtain information related to the multiple species 
involved in infectious disease dynamics. In addition, biodiversity data 
infrastructures have an opportunity to provide and promote data inte-
gration, interoperability, and access at global scale. 

Here, we identify relevant gaps and limitations that may be consid-
ered in the future for specific improvements of biodiversity data re-
positories, summarized in Appendix F. Further actions could include the 
creation of new international communication pipelines that better unite 
public and animal health institutions, governmental agencies, scientific 
community, diverse disciplines, and local communities, so that they 
together may better coordinate data sharing and global disease sur-
veillance. In these emerging challenges, clinical and health databases 
must not be on the side-lines. In addition, an improvement to the 
contribution of biodiversity repositories for infectious disease research 
may require a discussion in relation to the specific institutional scopes 
and taxonomic extents of the data provided. 

We advocate for the formal incorporation and recognition of biodi-
versity aggregated databases as critical infrastructure for multi-host 
disease understanding, predictions, and general human and animal 
health research, and invite researchers to share and reuse data, incor-
porating interdisciplinarity and cross-domain approaches in data- 
intensive research. The evidence of the contribution for infectious dis-
ease research justifies current and future actions to support biodiversity 
data mobilization, from generation, aggregation, accessibility, and final 
reuse. 
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[43] E. Arnaud, N.P. Castañeda-Álvarez, J.G. Cossi, D. Endresen, E. Jahanshiri, 
Y. Vigouroux, D. Schigel, Final Report of the Task Group on GBIF Data Fitness for 
Use in Agrobiodiversity, 2016. 

[44] Q. Groom, T. Adriaens, S. Bertolino, K. Phelps, J. Poelen, D. Reeder, D. Richardson, 
N. Simmons, N. Upham, Holistic understanding of contemporary ecosystems 
requires integration of data on domesticated, captive and cultivated organisms, 
BDJ. 9 (2021), e65371, https://doi.org/10.3897/BDJ.9.e65371. 

[45] P.D. Edwin Scholes III, Macaulay Library Audio and Video Collection, 2017, 
https://doi.org/10.15468/CKCDPY. 

[46] O.N. Reznik, D.O. Kuzmin, A.O. Reznik, Biobanks as the basis for developing 
biomedicine: problems and prospects, Mol. Biol. 51 (2017) 666–673, https://doi. 
org/10.1134/S0026893317050156. 

[47] N. Enke, A. Thessen, K. Bach, J. Bendix, B. Seeger, B. Gemeinholzer, The user’s 
view on biodiversity data sharing — investigating facts of acceptance and 

requirements to realize a sustainable use of research data —, Ecol. Inform. 11 
(2012) 25–33, https://doi.org/10.1016/j.ecoinf.2012.03.004. 

[48] M.H. Oushy, R. Palacios, A.E.C. Holden, A.G. Ramirez, K.J. Gallion, M. 
A. O’Connell, To share or not to share? A survey of biomedical researchers in the U. 
S. Southwest, an ethnically diverse region, PLoS One 10 (2015), e0138239, 
https://doi.org/10.1371/journal.pone.0138239. 

[49] L. Tedersoo, R. Küngas, E. Oras, K. Köster, H. Eenmaa, Ä. Leijen, M. Pedaste, 
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J.A. Cook, Leveraging natural history biorepositories as a global, decentralized, 
pathogen surveillance network, PLoS Pathog. 17 (2021), e1009583, https://doi. 
org/10.1371/journal.ppat.1009583. 

[66] L.M.R. Gadelha, P.C. Siracusa, E.C. Dalcin, L.A.E. Silva, D.A. Augusto, E. Krempser, 
H.M. Affe, R.L. Costa, M.L. Mondelli, P.M. Meirelles, F. Thompson, M. Chame, 
A. Ziviani, M.F. Siqueira, A survey of biodiversity informatics: concepts, practices, 
and challenges, WIREs Data Mining Knowl. Discov. 11 (2021), https://doi.org/ 
10.1002/widm.1394. 

[67] H.A. Piwowar, A method to track dataset reuse in biomedicine: filtered GEO 
accession numbers in PubMed central: a method to track dataset reuse in 
biomedicine: filtered GEO accession numbers in PubMed central, Proc. Am. Soc. 
Info. Sci. Tech. 47 (2010) 1–2, https://doi.org/10.1002/meet.14504701450. 

[68] T. Dallas, helminthR: an R interface to the London natural history museum’s host- 
parasite database, Ecography. 39 (2016) 391–393, https://doi.org/10.1111/ 
ecog.02131. 

[69] Plazi-Zenodo-GloBI integration, GloBI. https://www.globalbioticinteractions. 
org/plazi-zenodo/, 2020. 

[70] ARCTOS, ARCTOS Collaborative Collection Management Solution. https://arcto 
sdb.org/about/, 2022. 

[71] D.T. Haydon, S. Cleaveland, H.T. Taylor, M.K. Laurenson, Identifying reservoirs of 
infection: a conceptual and practical challenge, Emerg. Infect. Dis. 8 (2002) 
1468–1473, https://doi.org/10.3201/eid0812.010317. 

F. Astorga et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.tree.2019.03.004
https://doi.org/10.1016/j.joi.2017.08.007
https://doi.org/10.1016/j.joi.2017.08.007
https://doi.org/10.1073/pnas.1208059110
https://doi.org/10.1098/rstb.2001.0888
https://doi.org/10.1098/rstb.2001.0888
https://doi.org/10.1016/j.pt.2021.09.003
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://doi.org/10.1073/pnas.2002324118
https://doi.org/10.1038/s41598-017-09084-6
https://doi.org/10.1038/s41598-017-09084-6
https://doi.org/10.1002/ece3.2225
https://doi.org/10.1126/sciadv.1602422
https://doi.org/10.1016/j.envsci.2015.06.008
https://doi.org/10.1146/annurev.energy.28.050302.105532
https://doi.org/10.1146/annurev.energy.28.050302.105532
https://doi.org/10.3897/biss.4.59199
https://doi.org/10.1016/j.mran.2018.12.001
https://hsc.unm.edu/echo/partner-portal/programs/global/mepa/
https://hsc.unm.edu/echo/partner-portal/programs/global/mepa/
https://doi.org/10.1098/rstb.2016.0165
https://doi.org/10.1017/S0031182022001032
https://doi.org/10.1017/S0031182022001032
http://refhub.elsevier.com/S2352-7714(23)00004-6/rf0215
http://refhub.elsevier.com/S2352-7714(23)00004-6/rf0215
http://refhub.elsevier.com/S2352-7714(23)00004-6/rf0215
https://doi.org/10.3897/BDJ.9.e65371
https://doi.org/10.15468/CKCDPY
https://doi.org/10.1134/S0026893317050156
https://doi.org/10.1134/S0026893317050156
https://doi.org/10.1016/j.ecoinf.2012.03.004
https://doi.org/10.1371/journal.pone.0138239
https://doi.org/10.1038/s41597-021-00981-0
https://doi.org/10.1371/journal.pone.0021101
https://doi.org/10.1371/journal.pone.0026828
https://doi.org/10.1371/journal.pone.0026828
https://doi.org/10.1128/mBio.02698-20
https://datos.gob.mx/busca/dataset
https://datos.gob.mx/busca/dataset
https://www.ispch.gob.cl/andid/sistema-interactivo-de-resultados-de-vigilancia/
https://www.ispch.gob.cl/andid/sistema-interactivo-de-resultados-de-vigilancia/
https://empres-i.apps.fao.org/
https://www.ncbi.nlm.nih.gov/genbank/
http://refhub.elsevier.com/S2352-7714(23)00004-6/rf0285
http://www.ala.org.au/
https://fairsharing.org/
https://www.biomedcentral.com/collections/datasharing
https://www.biomedcentral.com/collections/datasharing
https://doi.org/10.1186/1756-0500-3-235
https://theodi.org/
https://okfn.org/
https://okfn.org/
https://doi.org/10.1016/j.tree.2013.05.002
https://doi.org/10.1371/journal.ppat.1009583
https://doi.org/10.1371/journal.ppat.1009583
https://doi.org/10.1002/widm.1394
https://doi.org/10.1002/widm.1394
https://doi.org/10.1002/meet.14504701450
https://doi.org/10.1111/ecog.02131
https://doi.org/10.1111/ecog.02131
https://www.globalbioticinteractions.org/plazi-zenodo/
https://www.globalbioticinteractions.org/plazi-zenodo/
https://arctosdb.org/about/
https://arctosdb.org/about/
https://doi.org/10.3201/eid0812.010317

	Biodiversity data supports research on human infectious diseases: Global trends, challenges, and opportunities
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusions
	Funding
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


